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Abstract. We investigate the scaling of the Rényi entanglement entropies for 
a particle bipartition of interacting spinless fermions in one spatial dimension. 
In the Tomonaga–Luttinger liquid regime, we calculate the second Rényi 
entanglement entropy and show that the leading order finite-size scaling is 
equal to a universal logarithm of the system size plus a non-universal constant. 
Higher-order corrections decay as power-laws in the system size with exponents 
that depend only on the Luttinger parameter. We confirm the universality of 
our results by investigating the one dimensional t− V  model of interacting 
spinless fermions via exact-diagonalization techniques. The resulting sensitivity 
of the particle partition entanglement to boundary conditions and statistics 
supports its utility as a probe of quantum liquids.
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1. Introduction

Identical particles are fundamentally indistinguishable in quantum mechanics, unlike 
their classical counterparts that can always be discriminated due to an infinite set of 
observable properties. While this indistinguishability allows for the power provided by 
the second quantization formalism, it can also lead to ambiguity [1–3] when consider-
ing another defining property of composite quantum systems: entanglement. A pure 
state representing N quantum particles |Ψ⟩ ∈ H in Hilbert space H is said to be bipar-
tite entangled if it cannot be written in a simple tensor product form |Ψ⟩ ≠ |ΨA⟩ ⊗ |ΨB⟩ 
where A and B are vector spaces with |ΨA⟩ ∈ A and |ΨB⟩ ∈ B such that A⊗ B = H. 
Conventionally, A and B correspond to a set of distinguishable single-particle modes 
whose occupation numbers are physical observables, i.e. spatial or momentum modes. 
However, for indistinguishable itinerant particles, there is no natural tensor product 
decomposition into single-particle modes due to the symmetrization or anti-symmetri-
zation of the wavefunction with respect to the interchange of first quantized particle 
coordinates for bosons and fermions, respectively. Thus, the mode entanglement may 
depend on the choice of single-particle modes, leading to questions as to which (if any) 
are preferred and moreover, if these quantum correlations are even physically meaning-
ful [4–11]. For example, even in the absence of interactions, a system of N free itinerant 
bosons [12, 13] or fermions [14–16] is always entangled under a spatial biparition as a 
result of all allowed states being normalized linear combinations of Slater determinants 
or permanents.
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Insights into these issues can be gained by considering the N-body wavefunction 
in first quantized form where a bipartition can be made in terms of identical particle 
labels. The resulting n-particle partition entanglement is a measure of quantum correla-
tions between the subsets of n and N − n particles. As individual (or groups of) iden-
tical particles are not operationally distinguishable, there have been claims that this 
type of entanglement is not useful as a resource for quantum information processing [4, 
10, 17]. However, schemes have been recently proposed to transfer it to exper imentally 
addressable modes [18]. In a foundational series of papers, Haque et al explored the par-
ticle partition entanglement in fractional quantum hall [19, 20] and itinerant bosonic, 
fermionic and anyonic lattice gases in one spatial dimension [21, 22]. This type of 
particle partition entanglement has since been investigated in other one dimensional 
systems including the fermionic Calogero-Sutherland [23], anyonic hard-core [24] and 
bosonic Lieb-Liniger [25, 26] models as well as rotating bose and fermi gases in two 
dimensions [27]. In analogy to the universal finite size scaling behavior of the entangle-
ment entropy of one dimensional quantum gases under a spatial mode bipartition 
[28–30], a leading order scaling form for the particle partition entanglement entropy S 
supported by exact diagonalization on small lattice models was proposed in [21] which 
is linear in the subsystem size n and logarithmic in the system size N: S ∼ n lnN .

Motivated by this empirical prediction, in this paper, we investigate the particle 
partition entanglement for itinerant interacting spinless fermions in one spatial dimen-
sion. For Galilean invariant systems in the spatial continuum, we confirm the scal-
ing form proposed in [21] within the Tomonaga–Luttinger liquid framework [31, 32] 
and determine how the leading order power-law corrections to the asymptotic scaling 
depend on the strength of the interactions between particles for n = 1. By exploiting 
symmetries of the n-particle reduced density matrix, we are able to measure the par-
ticle entanglement entropy in the one dimensional fermionic t− V  model for systems 
composed of up to M = 28 lattice sites at half filling, allowing us to confirm our predic-
tions from continuum field theory.

The rest of this paper is organized as follows. We introduce a quantitative mea-
sure of entanglement, the Rényi entanglement entropy and discuss some known 
results for interacting spinless fermions. We then derive the 1-particle entanglement 
entropy in the low energy limit and compare with exact diagonalization results on 
a lattice. We conclude with a discussion of the role of boundary conditions, degen-
eracy and implications for future studies of models with generalized statistics. All 
numerical data and code necessary to reproduce the results and figures in this paper 
can be found in [33].

2. Particle partition entanglement

The entanglement of the pure state 
∣

∣Ψ
〉

 under a general bipartition into A and B can 
be quantified via the Rényi entanglement entropy:

Sα [ρA] ≡
1

1− α
ln (TrραA) , (1)
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where α is the Rényi index and ρA is the reduced density matrix obtained by tracing 
out all degrees of freedom in B

ρA ≡ TrB

∣

∣Ψ
〉〈

Ψ
∣

∣

. (2)

For α = 1 the Rényi entropy is equivalent to the von Neumann entropy: −Tr ρA ln ρA. 
While it is common for A and B to be defined by some set of observable modes, for a 
many-body system consisting of N itinerant particles they can refer to subsystems of 
particles. As depicted in figure 1, such a bipartition of indistinguishable particles (in 
this case spinless fermions) is completely specified by the number of particles in the 
subsystem, n. The entanglement entropy under a particle bipartition is then a function 
of the familiar n-body reduced density matrix ρn, (n-RDM) defined in first quantized 
notation in one spatial dimension as:

ρn ≡

∫
dxn+1 · · ·

∫
dxN ⟨xn+1 · · · xN |Ψ⟩ ⟨Ψ|xn+1 · · · xN⟩ (3)

where we have taken the normalization Trρn = 1. From this form, it is clear that the 
particle partition Rényi entropies Sα[ρn] ≡ Sα(n) only vanish when the N-body ground 

state 
∣

∣Ψ
〉

 can be written as a general tensor product state in first quantized notation. 
This immediately implies that Sα(n) = 0 when all particles are condensed into a single 
mode, and thus the particle partition entanglement of the non-interacting Bose gas is 
identically zero, in contrast to non-zero results for its spatial mode entanglement [12, 
13]. This is not the case for many-fermion systems, which always have non-zero particle 
entanglement, even in the absence of interactions [15]. Particle entanglement entropy 
is sensitive to both interactions and statistics, and as ρn is free of any length scale, 
it can capture non-local effects making it complimentary to the more conventionally 
studied spatial mode entanglement entropy.

As described in the introduction, Zozulya et al [21] first proposed a ‘standard’ 
finite-size scaling form for the particle entanglement entropy of fermions:

S(n,N) = ln

(

N

n

)

+ a+O

(

1

Nγ

)

 (4)

where a and γ are non-universal dimensionless numbers that can depend on n. These 
coefficients are known for the case of non-interacting fermions where a = 0 [22] and for 
the Laughlin state with filling fraction ν: a = −n ln ν, γ = 2 when n ≪ N  [19].

Figure 1. A schematic of N = 7 fermions in one spatial dimension subject to 
periodic boundary conditions under a n-particle partition with n = 2 (left) and 
anti-periodic boundary conditions with N = 8 and n = 3 (right). All fermions are 
identical, while the partitions A and B are distinguished via their first quantized 
labels.
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Recently, a general scaling form like equation (4) was investigated for a system of 
interacting bosons in the spatial continuum with n = 1 [26] where it was found that the 
pre-factor of the leading order logarithm is non-universal, depending on the interaction 
strength. In this paper, we apply extensions of these methods to interacting Galilean 
invariant one dimensional fermions and are able to systematically derive equation (4) 
while presenting results for both a and γ as a function of the interaction strength.

3. One-particle entanglement in fermionic Tomonaga�Luttinger liquids

We are interested in the asymptotic finite size scaling of the entanglement entropy (EE) 
as defined in equation (1) which can be investigated for any Rényi index α. Here we 
focus on the special case of α = 2 as (i) the calculation will turn out to be analytically 
tractable and (ii) as it can be related to the expectation value of a local observable, it 
has proved to be the most direct numerical [34–37] and even experimental [38, 39] route 
to its measurement. We begin by considering a system of N one-dimensional interacting 
spinless fermions with density ρ0 = N/L (where L is the length of the system) whose 
low energy properties can be described in terms of the universal quantum hydrodynam-
ics of Tomonaga–Luttinger liquid (TLL) theory [31, 32]. Within this framework, at zero 
temperature in the thermodynamic limit, any n-body reduced density matrix can in 
principle be computed [40] and in particular for n = 1 [41]

ρ1 (x, x
′) =

sin(πρ0|x− x′|)

πρ0L|x− x′|(1 + |x− x′|2Λ2)(K+K−1−2)/4
, (5)

where Trρ1 = 1 and both the ultraviolet (inverse short-distance) cutoff Λ and TLL 
parameter K depend on the microscopic details of the interaction between particles. 
Specifically, K characterizes the nature of the interaction, where 0 < K < 1 (K > 1) 
corresponds to repulsive (attractive) interactions with free fermions having K = 1. For 
ease of notation, we will replace the non-negative K-dependent exponent in equa-
tion (5) with g ≡ (K +K−1

− 2)/4.
The one-particle partition second Rényi entanglement entropy can be computed by 

using ρ1 in equation (1)

S2(n = 1) = −ln
(

Tr
[

ρ
2

1

])

= −ln

(

∫ L/2

−L/2

dx

∫ L/2

−L/2

dx′
ρ1 (x, x

′) ρ1 (x
′, x)

)

= ln(N)− ln( f(N, g,Λ/ρ0)),

 
(6)

where we have used translational invariance of the system and

f(N, g,Λ/ρ0) =

∫
∞

0

dy
2 sin2(πy)

π2y2(1 + y2Λ2/ρ20)
2g

−

∫
∞

N/2

dy
2 sin2(πy)

π2y2(1 + y2Λ2/ρ20)
2g
.

 
(7)

The first integral can be evaluated exactly in terms of special functions:
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A(g,Λ/ρ0) =

∫

∞

0

dy
2 sin2(πy)

π2y2(1 + y2Λ2/ρ20)
2g

=
π
4g+ 1

2ρ
4g
0 sec(2πg) 1F2

(

2g; 2g + 1, 2g + 3

2
; π2Λ−2

ρ
2
0

)

2Λ4gΓ(2g + 1)Γ(2g + 3

2
)

+
ΛΓ

(

2g + 1

2

) [

1F2

(

−

1

2
; 1
2
, 1
2
− 2g; π2Λ−2

ρ
2
0

)

− 1
]

π3/2ρ0Γ(2g)
.

 

(8)

where 1F2(q; c, d; z) is the generalized hypergeometric and Γ(z) the Gamma function. 
The leading order N dependence of the second integral in equation (7) can be extracted 
by replacing the highly oscillating periodic function sin2(πy), in the large N limit, by 
its average over one period, i.e. sin2(πy) ≈ 1/2 and expanding the rest of the integrand 
for large y. We find

f(N, g,Λ/ρ0) ≃ A(g,Λ/ρ0)−
24g+1

π2(4g + 1)(Λ/ρ0)4g
1

N4g+1 (9)

and thus the second Rényi EE for n = 1 has the asymptotic form

S2(n = 1) = ln(N)− ln [A(g,Λ/ρ0)] +
b(g,Λ/ρ0)

N4g+1
+O

(

1

N4g+2

)

 (10)

where

b(g,Λ/ρ0) =
24g+1

π2(4g + 1)(Λ/ρ0)4gA(g,Λ/ρ0)
. (11)

This result constitutes an analytical confirmation of the empirical scaling form in equa-
tion (4) first proposed by Haque et al [21, 22], with n = 1, where

a = − ln [A(g,Λ/ρ0)] , γ = 4g + 1. (12)

3.1. Non-interacting spinless fermions

In the non-interacting limit when K = 1 (g = 0), equation (8) yields A(0,Λ/ρ0) = 1 and 
thus a = 0 in agreement with previous calculations of the particle partition EE for free 
fermions (FF) on a lattice [21] where it was found that S2,FF(n = 1) = lnN . However, 
combining equations (10) and (11) for g = 0 yields

S2(n = 1) ≃ ln(N) +
2

π
2N

. (13)

in disagreement with the lattice result by a factor of O(N−1). To ensure that this dis-
crepancy does not arise from the approximations made in expanding the integral in 
equation (7) we can return to the exact expression for the 1-RDM for non-interacting 
spinless fermions:

ρ1,FF (x, x
′) =

sin(πρ0|x− x′|)

πρ0L|x− x′|
, (14)
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which leads to a soluble integral and analytic form for the EE in the spatial continuum:

S2,FF(n = 1) = ln(N)− ln

{

2 [NπSi(Nπ) + cos(πN)− 1]

π
2N

}

 (15)

where Si(z) is the sine integral. Expanding for large N recovers the asymptotic form in 
equation (13) which differs from the known lattice result.

3.2. Effects of boundary conditions

The origin of this 1/N  difference between free spinless fermions in the continuum versus 
the lattice is related to our neglect of finite-size boundary conditions when studying the 
asymptotic behavior of the second Rényi EE. To properly capture the finite-size effects 
of periodic boundary conditions we replace separations |x− x

′| with the chord length 
between two points on a ring of circumference L [42]:

|x− x
′| →

L

π

sin

(

π

L
|x− x

′|
)

. (16)

Using the finite-size corrected 1-RDM, the integral in equation (7) takes the form

f(N, g,Λ/ρ0) =
2

N2

∫ N/2

0

dy
sin2(πy)

sin2(πyN )
[

1 + N2Λ2

π2ρ2
0

sin2(πyN )
]2g . (17)

where the effects of finite L will appear only in the prefactors of decaying terms in an 
asymptotic expansion. Employing equation (17) for free fermions with g = 0 we recover 
the known lattice result S2,FF(n = 1) = ln(N). For all subsequent comparisons with 
numerical data at finite g we employ the appropriately finite size corrected form of the 
1-RDM when computing the Rényi entanglement entropy.

4. Exact diagonalization of the t − V  chain of spinless fermions

In order to test the validity of our main result in equation (10) for the n = 1 particle 
partition EE, we consider the t− V  model of N spinless fermions on a chain with M 
sites defined by the Hamiltonian

H = −t
∑

i

(

c
†
i
ci+1 + c

†
i+1ci

)

+ V
∑

i

nini+1 (18)

where c†
i
 and ci are the fermionic creation and annihilation operators at site i and 

ni = c
†
i
ci is the occupation number. The model is parameterized by the nearest-neighbor 

hopping amplitude t > 0, and interaction strength V. We consider only the half-filled 
case (M = 2N) with periodic boundary conditions (PBC) for odd number of fermions 
N, while for even N we use antiperiodic boundary conditions (APBC) to avoid the oth-
erwise degenerate ground state [42] (See figure 1). In order to make connection with the 
general TLL theory described above, we require a method to determine the parameter 
K from the microscopic t− V  model. This can be accomplished via the Jordan–Wigner 
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transformation [43] which maps the t− V  model onto the XXZ spin-1/2 chain that is 
exactly solvable [44, 45]. In the range |V/t| < 2, the system is known to be in the TLL 
phase, where the analytical form of K is given by

K =
π

2 cos−1(−V/2t)
. (19)

By increasing the repulsive interaction across V/t = 2 (K = 1/2), the system undergoes 
a continuous phase transition to a charge-density wave (CDW) phase. In contrast, the 
transition across V/t = −2 (K → ∞) is a discrete one, where the fermions tend to form 
a single cluster.

Beginning with the non-interacting case (V/t = 0), the FF Hamiltonian is diagonal 
in the momentum-space representation leading to a ground state that is a Slater deter-

minant of the N lowest energy modes. The rank of the resulting n-RDM is 

(

N

n

)

 and 

with equal eigenvalues [21], it follows (as introduced above) that all the Rényi EEs are 

equal to

Sα,FF(n) = ln

(

N

n

)

. (20)

In the presence of interactions, we calculate the von Neumann (α = 1) and the second 
(α = 2) Rényi EEs from the ground state of equation (18) which we obtain via numer-

ical exact diagonalization. The resulting n-RDM has maximum possible rank 

(

M

n

)

 

due to the indistinguishability of the n < N  particles in the partition, as opposed to 

n!

(

M

n

)

, the full dimension of the Hilbert space in the first quantized basis. Exploiting 

this symmetry, (for details, see appendix A) we are able to study systems up to M = 28 
sites, a considerable advancement over previous work [22]. The results are shown in 
figure 2 which demonstrates that the entanglement entropy Sα(n = 1) increases with 
increasing interaction strength |V/t| up to a maximum of Sα,FF(n = 1) + ln 2 (for even N)  
in the limit |V/t| → ∞ [21, 22]. For attractive interactions, Sα(n = 1) displays a 
sharp increase around the first-order transition point V/t = −2. In contrast, Sα(n = 1) 
does not seem to be sensitive to the continuous transition at V/t = 2 [21]. However, 
when considering a macroscopic partition size n = N/2, we observe that Sα(n = N/2)  
develops a peak near V/t = 2 which appears to approach the critical point as we 

increase N (figure 2 (b)). Eventually, Sα(n = N/2) saturates to ln

(

N
N/2

)

+ ln 2 in the 

limit V/t → ∞, with details given in appendix B.
We now turn to the TLL region |V/t| < 2, where we expect the scaling of the 

interaction contribution to the EE: S2(n = 1)− ln(N), to be linear in 1/N4g+1 with 
corrections of O(1/N4g+2) as in equation (10). To test this prediction, we rearrange 
equation (10) as:

S2(n = 1)− ln(N)− a

b
= N

−(4g+1) +O
(

N
−(4g+2)

)

. (21)
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and calculate S2(n = 1) as a function of N using the ground state of the t− V  model for 
different values of the interaction strength V/t, deep in the TLL phase (away from the 
phase transitions). For each interaction strength V/t, we compute g = (K +K−1

− 2)/4 
using equation (19) and extract a and b from a linear fit to the S2(n = 1)− ln(N) versus 
N−(4g+1) data set. Next, we use the extracted coefficients to rescale S2(n = 1)− ln(N) 
according to equation (21). The results are illustrated in figure 3, where, for suitably 
large N, the data follows the straight line predicted by equation (21) with unit slope, 
verifying the TLL scaling form in equation (10). Deviations from linearity for smaller 
N arise due to finite size corrections of O(1/N4g+2).

Figure 2. Interaction effects on the n-particle entanglement entropy Sα(n) for 
α = 1, 2 in the ground state of the t− V  model. (a) Sα(n = 1)− lnN versus V/t for 
N = 13 and 14 with periodic and anti-periodic boundary conditions, respectively. 
The light gray vertical lines mark the location of the known phase transitions at 
V/t = ±2. The subtracted ln(N) term is the one-particle entanglement entropy for 
free fermions. Inset: the Tomonaga–Luttinger liquid region where we expect the 

continuum theory to apply. (b) Sα(n = N/2)− ln
(

N
N/2

)

 versus V/t for macroscpic 

partitions with n = N/2 and anti-periodic boundary conditions. As N  increases, 
features appear near the phase transitions for α = 1.



Particle partition entanglement of one dimensional spinless fermions

10https://doi.org/10.1088/1742-5468/aa819a

J
. S

ta
t. M

e
c
h
. (2

01
7

) 0
8
3
10

8

Having understood the asymptotic scaling of the 1-particle partition Rényi EE with 
N, we now consider its dependence on the interaction strength g. This amounts to ask-
ing if the g-dependence of the scaling coefficients a and b for the t− V  model can be 
predicted from our continuum theory. To answer this question we calculate the second 
Rényi EE for |V/t| < 2 in the liquid phase at fixed N by evaluating the full integral in 
equation (17) numerically including all contributions from finite N. However, in order 
to compare the resulting particle EE with that obtained from the exact diagonaliza-
tion, we need to identify the corresponding non-universal value of the ratio Λ/ρ0 in 
the t− V  model. At half filling, the average particle density is ρ0 = 1/2x0 where x0 is 
the lattice separation, while one estimates the ultraviolet cutoff Λ to be of the order 
of 1/x0, yielding Λ/ρ0 ≈ 2. The open and closed symbols in figure 4 show the exact 
diagonalization results for S2(n = 1)− ln(N) as a function of g for N = 13. The three 
lines correspond to the prediction from the TLL theory for different values of the UV 
cutoff Λ. Due to the highly non-linear relationship between the interaction strength 
V/t and the TLL parameter K (equation 19), in combination with the sensitivity of 
the particle partition entanglement to the strength and nature of inter-particle interac-
tions, it is no surprise that the EE in the t− V  model is a multi-valued function of the 
effective interaction parameter g for attractive and repulsive interactions. Clearly, high 
energy lattice-scale physics, not captured within the low energy TLL theory is respon-
sible for this behavior. Moreover, recall that the ultraviolet cutoff, Λ, in equation (5), 
is proportional to the inverse of the effective range of the interaction [41]. Therefore, 
we expect Λ to exhibit a dependence on the nature and strength of the interaction, i.e. 
have K-dependence [26]. Considering such a dependence, we find that the t− V  model 
results for S2(n = 1)− ln(N) are bounded by the theoretically calculated ones using 
Λ/ρ0 = 1.7 and 2.5 (figure 4). Note that both ratios are of order 2.

Figure 3. Finite size scaling of S2(n = 1)− ln(N) with N−(4g+1) for 2 ! N ! 14 
confirming the empirical asymptotic scaling predicted by Zozulya et al [19] and 
identifying the power of the leading finite size correction as γ = 4g + 1. The 
coefficients a and b depend on the interaction strength V/t and are calculated from 
a linear fit of the exact diagonalization data according to equation (10).
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Testing the proposed leading order scaling of the particle partition EE in equa-
tion (4) with the partition size n in the TLL phase, requires the calculation of the  
n-RDM with n > 1. While this can be done in principle using standard techniques [40], 
the resulting evaluation of S2(n) requires performing 2n non-separable integrals. Even 
for the n = 2 case we were not able to analytically extract the asymptotic scaling of 
Tr ρ2

2
. However, from numerical exact diagonalization of the t− V  model in the in the 

TLL phase we were able to calculate the Rényi EEs for partitions up to n = N/2 = 5 
for N = 10 as seen in figure 5. Our results are in agreement with previous calcul-
ations of N = 6, n = 3 [21] and strongly suggest that the leading term in the scaling 

of the Rényi EEs with n is indeed equal to the Rényi EE of free fermions, i.e. ln

(

N

n

)

. 

Interactions introduce a correction term that increases with the partition size with a 
negative curvature (see figure 5 inset) such that both the leading order constant and 
finite-size power-law corrections to scaling both depend on n.

Finally we investigate the question of whether particle bipartition EE is sensitive to 
the ground state degeneracy known to occur in the t− V  model with periodic bound-
ary conditions and an even number of sites. Introducing the inversion operator P [46] 
defined by

Pc
†
i
P †

= c
†
M−i+1, i = 1, · · · ,M. (22)

where P commutes with the Hamiltonian of the t− V  model in equation (18) for PBC, 
we can write the degenerate ground state as a superposition of the eigenstates of the 
inversion operator: P |Φ±⟩ = ±|Φ±⟩, i.e.

Figure 4. The effective interaction dependence of the 1-particle partition second 
Rényi entanglement entropy S2(n = 1)− ln(N). Open (closed) points were computed 
via exact diagonalization of the t− V  model for N = 13 with repulsive (attractive) 
interactions. The lines show the prediction from the Tomonaga–Luttinger liquid 
theory for three different values of the ultraviolet cutoff Λ measured in units of 
the density ρ0.
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|Ψ⟩ = cos(θ)|Φ+⟩+ sin(θ)|Φ
−
⟩. (23)

Here, we only consider a superposition with real coefficients that can be varied through 
the parameter 0 ! θ ! π and study the dependence of the Rényi EEs on θ as seen 
in figure 6. Our numerical results for repulsive interactions with N = 10 show that 

Figure 5. Scaling of Sα(n) with ln
(

N

n

)

 for α = 1, 2 in the ground state of the t− V  

model with V/t = 1, N = 10, and for partition sizes 1 ! n ! 5. Inset: interaction 
contribution to the EE (S1(n)− ln

(

N

n

)

) versus n.

Figure 6. Effects of ground state degeneracy. The S2(n = 1)− ln(N) dependence 
on V/t in the ground state of the t− V  model for N = 10. Solid lines represent 
results obtained from the degenerate ground state in equation (23) using PBC 
and θ = 0, π/4 (see the text for details). The dashed line corresponds to the non-
degenerate ground state for APBC. Inset: S2(n = 1)− ln(N) versus θ for V/t = 6.
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S1(n = 1) oscillates with θ (figure 6 inset), where the maximum EE corresponds to 
|Ψ⟩ being an eigenstate of P, i.e. θ = 0 or θ = π/2, and the minimum EE is obtained 
when both eigenstates |Φ±⟩ contribute equally to |Ψ⟩ (maximum uncertainty in P, 
θ = π/4, 3π/4). Moreover, the difference between the lower and upper bound vanishes 
in the non-interacting limit and widens with increasing interaction strength up to ln 2 
in the limit V/t → ∞ (see appendix B). Interestingly, figure 6 shows that for θ = π/4, 
S1(n = 1) exhibits a peak near the critical point (V/t = 2), while the S1(n = 1) depend-
ence on V/t for θ = 0 is very similar to that obtained from the non-degenerate ground 
state using APBC.

5. Conclusions

In this paper we have studied the finite size and interaction dependence of the particle 
partition Rényi entanglement entropies of a fermionic Tomonaga–Luttinger liquid and 
find that:

Sα(n,N) = ln

(

N

n

)

+ aα(n) +O

(

1

Nγα(n)

)

 (24)

where n is the number of particles in the subsystem and α the Rényi index. This 
result is in agreement with the empirical prediction made in [19]. For the special case 
n = 1, α = 2 we have determined the power of the finite size correction to the lead-
ing logarithm to be γ2(1) = K +K−1

− 1 where K is the Luttinger parameter and 
confirmed this interaction dependence for the t− V  model by mapping it to the exactly 
solvable XXZ chain. The more general result for n > 1, α ̸= 2 in equation (24) is sup-
ported by extensive exact diagonalization results on the lattice t− V  model of spin-
less fermions obtained on systems with up to M = 28 sites. This general scaling form 
can be contrasted with a bosonic Tomonaga–Luttinger liquid, where it was found 
[26] that S2(n,N) ≃ (n/K) lnN + a′

2
(n) +O(1/N1−K−1

) which asymptotically recovers 
the free fermion result in the limit of hard-core bosons (K → 1+) using the fact that 
(

N
n

)

≈ Nn/n! for N ≫ n.

The universality of the prefactor of the leading order logarithm in equation (24) 
demonstrates that due to the required anti-symmetrization of the N-particle wavefunc-
tion, fermions are always more entangled than bosons under a particle partition. This 
is consistent with what was numerically found for hard-core particles with variable 
anyonic statistics [24]. Such sensitivity to particle statistics and interaction depend-
ence is absent in the asymptotic scaling of the spatial mode entanglement entropy for 
critical (1 + 1)-dimensional systems where the prefactor is universal and related to the 
central charge of the underlying conformal field theory [28]. Thus, the particle partition 
entanglement appears to be a useful diagnostic of quantum correlations in many-body 
systems, and its logarithmic scaling with the total number of particles N highlights the 
potential utility of protocols [18] that aim to transfer it to experimentally accessible 
mode entanglement.
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An interesting open question remains on the origin and development with system 
size of the peak in the entanglement entropy in the ground state of the t− V  model 
near the continuous phase transition at V/t = 2 for macroscopic particle partitions 
with n = N/2 (figure 2(b)). A careful finite-size analysis of this unexpected feature (due 
to the lack of any natural length scale describing the partition) would require moving 
beyond exact diagonalization and employing recently adapted hybrid Monte Carlo 
methods [37, 47, 48].
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Appendix A. Evaluating the n-particle partition entanglement

In this appendix, we show that the n-RDM of spinless hardcore particles on a lattice 
can be written as a tensor product of two lower-rank matrices. This simplification 
significantly reduces the numerical cost for calculating n-RDM for such quantum 
systems.

In general, for a pure quantum state |Ψ⟩ in some Hilbert space H that can be writ-
ten as the tensor product space A⊗ B, we can write

|Ψ⟩ =
∑

i,j

Ci,j|ψ
A
i ⟩|ψ

B
j ⟩, (A.1)

where {|ψA
i ⟩} and {|ψB

j ⟩} are orthonormal bases in the two Hilbert spaces A and B, 
respectively. Accordingly, the system degrees of freedom are bipartitioned between the 

two subsets {|ψA
i ⟩} and {|ψB

j ⟩}. Using the product basis {|ψA
i ⟩|ψ

B
j ⟩}, the full density 

matrix can be written as

ρ = |Ψ⟩⟨Ψ| =
∑

i,j,i′,j′

|ψA
i ⟩|ψ

B
j ⟩Ci,jC

∗

i′,j′⟨ψ
A
i′ |⟨ψ

B
j′ |. (A.2)

The reduced density matrix ρA (ρB) of subspace A (B) , is obtained from ρ by tracing 
out the degrees of freedom of subspace B (A),

ρA =

∑

m

⟨ψB
m|ρ|ψ

B
m⟩ =

∑

i,j

|ψA
i ⟩

(

∑

m

Ci,mC
∗

j,m

)

⟨ψA
j |, (A.3)

ρB =

∑

m

⟨ψA
m|ρ|ψ

A
m⟩ =

∑

i,j

|ψB
i ⟩

(

∑

m

Cm,iC
∗

m,j

)

⟨ψB
j |. (A.4)

Moreover, the reduced density matrices can be generated using the linear maps 
GAB : SB → SA as ρA = GABG

†
AB

 and ρB = (G†
AB

GAB)T  where
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GAB =

∑

i,j

Ci,j|ψ
A
i ⟩⟨ψ

B
j |. (A.5)

Note that, in general, the matrix representing the linear maps GAB is rectangular since 
the dimensions of the Hilbert spaces A and B can differ.

A.1. Particle bipartition

Let us now consider a quantum system of N spinless hardcore particles in a state 
|Ψ⟩ =

∑
i
χi|ψN

i ⟩, where {|ψN
i ⟩} are the N particle second-quantization basis states, 

where each basis state corresponds to a single, possible, occupation number configuration 
(ONC). Now we recall that each ONC state is a linear combination of the distinguished 
particles states {|ψN

i,j⟩} as |ψN
i ⟩ =

∑
j

fj
√

N !
|ψN

i,j⟩, where j runs over all possible particle 
permutations (PPs) and fj = e

−iφj is the corresponding phase factor. Accordingly, we 
can write

|Ψ⟩ =
∑

i,j

χifj√
N !

|ψN
i,j⟩. (A.6)

Now we partition N into two sets of particles: nA and the remainder nB = N − nA. 

The distinguished particles basis {|ψN
i,j⟩} can be written as a tensor product of the two 

partitions basis

|ψN
i,j⟩ = |ψnA

iA,jA
⟩|ψnB

iB ,jB
⟩, (A.7)

where each ONC (labelled by i) of the N particles corresponds to a unique pair of ONCs 
iA and iB of the nA and nB particles, respectively. Similarly, each PP j of the N particles 
corresponds to a unique pair of PPs: jA and jB of the nA and nB particles.

|Ψ⟩ =
∑

iA,iB ,jA,jB

CiA,iB ,jA,jB |ψ
nA

iA,jA
⟩|ψnB

iB ,jB
⟩,

 (A.8)

with

CiA,iB ,jA,jB =
χifj
√

N !
. (A.9)

The CiA,iB ,jA,jB depends on the indices i and j through the multiplication of χi and fj, 
and without loss of generality, we can take

CiA,iB ,jA,jB = C̃iA,iBΦjA,jB . (A.10)

Moreover, the dependence of ΦjA,jB on the PP indices only guarantees that 

|ΦjA,jB |
2
= constant that can be absorbed in C̃iA,iB. Thus, we can set |ΦjA,jB |

2 = 1. 
Based on the fact that applying a particle permutation to one group of particles results 
in an overall phase factor that does not depend on the permutation of the other group 
of particles, we write

ΦjA,jB = F
(A)
jA

F
(B)
jB

, (A.11)
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with |F (A)
jA

|2 = |F (B)
jB

|2 = 1. Substituting in equation (A.8) we find

|Ψ⟩ =
∑

iA,iB ,jA,jB

C̃iA,iBF
(A)
jA

F
(B)
jB

|ψnA

iA,jA
⟩|ψnB

iB ,jB
⟩,

 (A.12)

Let us now calculate the reduced density matrix of ρA using

GnAnB
=

∑

iA,iB ,jA,jB

C̃iA,iBF
(A)
jA

F
(B)
jB

|ψnA

iA,jA
⟩⟨ψnB

iB ,jB
|,

 (A.13)

as

ρA = GnAnB
G

†
nAnB (A.14)

=
∑

i
A
,j
A
,i′
A
,j′
A

|ψnA

i
A
,j
A

⟩
∑

i
B

(

C̃i
A
,i
B
C̃∗

i′
A
,i
B

)

F
(A)
j
A

F
∗(A)
j′
A

∑

j
B

∣

∣

∣
F

(B)
j
B

∣

∣

∣

2

⟨ψnA

i′
A
,j′
A

|

= nB!
∑

i
A
,j
A
,i′
A
,j′
A

|ψnA

i
A
,j
A

⟩Di
A
,i′
A
Φj

A
,j′
A
⟨ψnA

i′
A
,j′
A

|,
 

(A.15)

with Di
A
,i′
A
=

∑
i
B

C̃i
A
,i
B
C̃∗

i′
A
,i
B

 and Φj
A
,j′
A
= F

(A)
j
A

F
∗(A)
j′
A

. From equation (A.15) we see 

that ρA is a Kronecker product (tensor product) of the lower-rank Hermitian matrices 
D and Φ. where D can be calculated considering a single PP for each particle partition 
and the elements of Φ are the product of the relative phases of the chosen partitions 
(A.11)

A.2. Eigenvalues

Let VD and VΦ be two unitary transformations that diagonalize the sub matrices D and 
Φ, respectively. Such that V †

D
DV

D
= Λ and V †

Φ
ΦV

Φ
= W , where Λ and W are diagonal 

matrices with eigenvalues {λk} and {wl}. If we construct the unitary transformation U 
as

U = VD ⊗ VΦ, (A.16)

and calculate U †(ρA/nB!)U we find

U
†

(

ρA
nB!

)

U =
∑

k,l

|ψn1

k,l⟩λkwl⟨ψ
n1

k,l|. (A.17)

Accordingly, the unitary transformation U diagonalizes ρA and the eigenval-
ues of ρA are nB!λkwl. Moreover, Φ has the structure of a simple projection 

operator onto the non- nor malized state |F (A)⟩ =
∑nA!

j F
(A)
j | j⟩ =

∑nA!
j e

iφj | j⟩ as 

Φ = |F (A)⟩⟨F (A)|. The only eigenstate of Φ with a nonzero eigenvalue is |F (A)⟩, where 

Φ|F (A)⟩ = |F (A)⟩⟨F (A)|F (A)⟩ = nA!|F (A)⟩.
Therefore, we conclude that the nonzero eigenvalues of ρA are nA!nB!λk, where λk 

are the eigenvalues of the matrix D that is constructed using only one PP of each of 
the sets {|ψnA

iA,jA
⟩} and {|ψnB

iB ,jB
⟩}. As the rank of D is smaller than that of the n-RDM 

by a factor of nA!nB! the numerical effort involved in calculating the eigenvalues of the 
n-RDM is enormously reduced.
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Appendix B. n-particle partition entanglement in the V/t → ∞ limit

Here we calculate the n-particle partition entanglement of the one-dimensional fermi-
onic t− V  model at half filling (N = M/2) in the infinite repulsion limit (V/t → ∞). In 
this limit, the Hamiltonian of the model (equation (18)) is reduced to

H = V
∑

i

nini+1 (B.1)

which is diagonal in the occupation number representation with a two-fold degenerate 
ground state, where, at half filling, the fermions can avoid having any nearest neighbors 
by occupying sites with only odd indices (|ψodd⟩ = |1010 · · · 10⟩) or only even indices 
(|ψeven⟩ = |0101 · · · 01⟩). Thus, one can write the ground state in this limit, as a super-
position of |ψodd⟩ and |ψeven⟩:

|Ψ⟩ = cos(Θ)eiδ|ψodd⟩+ sin(Θ)|ψeven⟩, (B.2)

where we parametrize the amplitudes and the relative phase of the odd/even states 
using Θ and δ. Note that for δ = 0 and Θ = π/4 (Θ = 3π/4), the ground state |Ψ⟩ is 
also an eigenstate of the inversion operator P (equation (22)) with eigenvalue ±1 where

P |Φ±⟩ = ±|Φ±⟩ = ±

(

1√
2
|ψodd⟩±

1√
2
|ψeven⟩

)

. (B.3)

The degeneracy persists in the case of finite interaction V/t for even/odd N with PBC/
APBC. The degeneracy is lifted for odd/even N with APBC/PBC with the resulting 
ground state in the infinite repulsion limit approaching an eigenstate of P:

|Ψ⟩ = |Φ+⟩ =
1√
2
|ψodd⟩+

1√
2
|ψeven⟩. (B.4)

We now consider the n-particle partition entanglement of the degenerate ground 
state |Ψ⟩ defined in equation (B.2), where we can write the corresponding full density 
matrix ρ as

ρ = cos2(Θ)|ψodd⟩⟨ψodd|+ sin2(Θ)|ψeven⟩⟨ψeven|

+ sin(Θ) cos(Θ)eiδ|ψodd⟩⟨ψeven|+ sin(Θ) cos(Θ)e−iδ|ψeven⟩⟨ψodd|,
 

(B.5)

If we partition the N particles into two distinguishable sets of nA = n and nB = N − n 
particles, we can write the states |ψodd⟩ and |ψeven⟩ in terms of the first-quantized basis 
states of the two partitions as

|ψodd⟩ =
∑

iA,iB ,jA,jB

f odd
iA,iB ,jA,jB√

N !
|ψnA,odd

iA,jA
⟩|ψnB ,odd

iB ,jB
⟩, (B.6)

|ψeven⟩ =
∑

iA,iB ,jA,jB

f even

iA,iB ,jA,jB√
N !

|ψnA,even
iA,jA

⟩|ψnB ,even
iB ,jB

⟩, (B.7)

where the indices iA and iB label possible occupation number configurations (ONCs) 
in both partitions A and B while jA and jB label different particle permutations (PPs). 

Also, f odd
iA,iB ,jA,jB

 and f even

iA,iB ,jA,jB
 are overall phase factors, where the superscript odd 
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(even) is to indicate that only sites with odd (even) indices are occupied. We note that 
in this decomposition the states |ψeven⟩ and |ψodd⟩ are constructed from non-overlapping 
subspaces (even/odd) of partition B. Similarly for partition A. By tracing out all degrees 
of freedom in B from ρ (equation (B.5)), we can write the reduced density matrix ρA as

ρA = TrB ρ = cos2(Θ)TrB |ψodd⟩⟨ψodd|+ sin2(Θ)TrB |ψeven⟩⟨ψeven|, (B.8)

where the trace of the mixed terms (|ψodd⟩⟨ψeven|, |ψeven⟩⟨ψodd|) vanishes due to the non-
sharing of B basis states. Moreover, ρoddA = TrB |ψodd⟩⟨ψodd| and ρevenA = TrB |ψeven⟩⟨ψeven| 
contribute separately to the spectrum of ρA due to the non-sharing of A basis states.

We now calculate the spectrum of ρoddA . Note that the state |ψodd⟩ represents a single 
ONC of the N particles and as a result the ONC iA is uniquely determined by iB in the 

product states |ψnA,odd
iA,jA

⟩|ψnB ,odd
iB ,jB

⟩. Therefore, ρoddA  does not connect any pair of states, in 
the set {|ψnA,odd

iA,jA
⟩}, with different ONC iA. This result, combined with the formalism 

presented in appendix A, allows us to identify that the sector of ρoddA  that connects 

states in {|ψnA,odd
iA,jA

⟩} with fixed PP jA is diagonal with 

(

N

n

)

 equal non-zero elements of 

value 1

N !
. 

(

N

n

)

 is the number of possible ONCs in the partition A with nA = n and we 

only consider the contribution of a single PP jB to TrB |ψodd⟩⟨ψodd|. It then follows from 
appendix A that the non-zero eigenvalues of ρoddA  can be obtained by rescaling the above 
eigenvalues by a factor of nA!nB! = n!(N − n)!. By an equivalent set of arguments ρevenA

 
has the same eigenvalues. Combining all the above and using equation (B.8), we find 

that ρA has two sets of eigenvalues: 

(

N

n

)

 eigenvalues of cos2(Θ)/

(

N
n

)

 and 

(

N

n

)

 eigen-

values of sin2(Θ)/

(

N
n

)

. Therefore, the Rényi entanglement entropies are

Sα(n) = ln

(

N

n

)

+
1

1− α

ln
[

cos2α(Θ) + sin2α(Θ)
]

, (B.9)

and the von Neumann entropy (α = 1) is

S1(n) = ln

(

N

n

)

− cos2(Θ) ln
[

cos2(Θ)
]

− sin2(Θ) ln
[

sin2(Θ)
]

. (B.10)

According to equations (B.9) and (B.10), the maximum entropy corresponds to Θ = π/4 

and 3π/4 (|Ψ⟩ = eiδ
√

2
|ψodd⟩+

1
√

2
|ψeven⟩), where all the 2

(

N

n

)

 eigenvalues of ρA are equal 

and thus all the Rényi entropies are equal to

Sα(n) = ln

(

N

n

)

+ ln 2. (B.11)

For Θ = 0 and π/2, |Ψ⟩ = |ψodd⟩ or |ψeven⟩, only 

(

N

n

)

 equal eigenvalues survive yielding 
a minimum entropy of

Sα(n) = ln

(

N

n

)

. (B.12)

These limits can be seen in figure 6 for V/t ≫ 1.
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